Surface-enhanced Raman spectroscopy for facile DNA detection using gold nanoparticle aggregates formed via photoligation.

نویسندگان

  • Nguyen T B Thuy
  • Ryoko Yokogawa
  • Yoshinaga Yoshimura
  • Kenzo Fujimoto
  • Mikio Koyano
  • Shinya Maenosono
چکیده

We present a new type of nanoparticle-based DNA sensor using surface-enhanced Raman scattering (SERS) on gold nanoparticle (Au NP) aggregates formed by DNA photoligation. The DNA sensor exploits the photoligation reaction between oligodeoxynucleotides (ODNs) attached to the surfaces of Au NPs in the presence of target DNA (T-DNA). When hybridization takes place between the ODNs and T-DNA, Au NPs are covalently crosslinked to form aggregates via photoligation. Once the NP aggregates are formed, the interspace between Au NPs in the aggregate act as a stable "hot spot", and a SERS signal from the Raman-active molecules (sodium cacodylate) present in the hot spot is easily and sensitively detected. In contrast, a SERS signal is not detected if the hybridization is unsuccessful, because the stable hot spot does not form. This DNA sensor does not require an enzymatic reaction, fluorescent dye, precise temperature control, or complicated operating procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoparticle Layers Assembled through DNA Hybridization: Characterization and Optimization

The hybridization of nanoparticle-labeled DNA targets to surface-attached DNA probes has been investigated. Scanning tunneling microscopy (STM) and Raman and Fourier transform infrared (FTIR) spectroscopy were used to elucidate surface morphology, coverage, and the presence of aggregates. The factors that affect surface coverage, such as probe density, labeled target concentration, and particle...

متن کامل

Label free sub-picomole level DNA detection with Ag nanoparticle decorated Au nanotip arrays as surface enhanced Raman spectroscopy platform.

Label free optical sensing of adenine and thymine oligonucleotides has been achieved at the sub-picomole level using self assembled silver nanoparticles (AgNPs) decorated gold nanotip (AuNT) arrays. The platform consisting of the AuNTs not only aids in efficient bio-immobilization, but also packs AgNPs in a three dimensional high surface area workspace, assisting in surface enhanced Raman scatt...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Highly reproducible and sensitive surface-enhanced Raman scattering from colloidal plasmonic nanoparticle via stabilization of hot spots in graphene oxide liquid crystal.

Although it is now well recognized that plasmonic gold/silver nanoparticle based aggregates having electromagnetic hot spots are responsible for high sensitivity in surface-enhanced Raman spectroscopy (SERS), the high yield and reproducible production of such nanostructures are challenging and limit their practical application. Here we show a graphene oxide (GO) based approach in generating sta...

متن کامل

Photoisomerization of azobenzene derivatives confined in gold nanoparticle aggregates.

Photoisomerization is an important reaction that confers photoresponsive functionality on nanoparticles. Although photoisomerization of molecules forming self-assembled monolayers on two-dimensional surfaces or three-dimensional clusters has been studied, a detailed picture of interactions of molecules undergoing isomerization with nanoparticles is not available. In this paper, we report on the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 135 3  شماره 

صفحات  -

تاریخ انتشار 2010